45. K. Oyaizu, “Reversible and High-density Energy Storage with Polymers Populated with Bistable Redox Sites”, Polym. J., 56, 127-144 (2024). DOI: 10.1038/s41428-023-00857-7
Redox-active polymers with charging/discharging reversibility are employed to develop electrode-active materials in organic batteries, which are characterized by high power rates, flexibility/bendability, and environmentally benign properties. Reversible charge storage with polymers is achieved by redox “bistability” and exchange reactions.
44. K. Hatakeyama-Sato, K. Oyaizu, “Redox: Organic Robust Radicals and Their Polymers for Energy Conversion/Storage Devices”, Chem. Rev., 123, 11336-11391 (2023). DOI: 10.1021/acs.chemrev.3c00172
43. S. Watanabe, K. Oyaizu,* “Designing Strategy for High Refractive Index Polymers: From the Molecular Level to Bulk Structure Control”, Bull. Chem. Soc. Jpn. (Accounts), 96, 1108-1128 (2023). DOI: 10.1246/bcsj.20230177 (Open Access)
42. Y. Kaiwa, K. Kobayashi, M. Kataoka, Y. Tobita, K. Oyaizu*, “Polymers for Reversible Hydrogen Storage Inspired by Electrode-active Materials in Organic Batteries”, Int. J. Soc. Mater. Eng. Resour., 25, 1-9 (2022).
41. 宮武健治, 小柳津研一, 三宅純平, “リチャージャブル燃料電池”, 水素エネルギーシステム, 46, 6-11 (2021).
40. Y. Xie, K. Zhang, Y. Yamauchi, K. Oyaizu, Z. Jia, “Nitroxide Radical Polymers for Emerging Plastic Energy Storage and Organic Electronics: Fundamentals, Materials, and Applications”, Mater. Horiz., 8, 803-829 (2021). DOI: 10.1039/D0MH01391A
39. 畠山歓, 小柳津研一, “AIを活用した新規イオン伝導性高分子の探索と開発”, 機能材料, 40, 33-45 (2020).
38. 小柳津研一, “有機電極活物質を用いた二次電池・レドックスフロー電池”, 電池技術, 32, 53-58 (2020).
37. K. Oyaizu, “Progress in Organic Polymer Batteries”, Digest for English Readers, Kobunshi, 69, 93 (2020).
36. 小柳津研一, “有機ポリマー電池の研究動向”, 高分子, 69, 104-106 (2020).
35. 小柳津研一, “有機系蓄電池の電荷貯蔵機構と将来性”, 応用物理学会有機分子・バイオエレクトロニクス分科会誌, 31, 5-8 (2020).
34. 小柳津研一, 西出宏之, “有機材料でいかに電荷を貯蔵するか: 単一分子のレドックス反応から有機蓄電材料への展開”『有機材料で電荷貯蔵~省資源と高性能は両立できるか』, 化学と工業, 71, 462-464 (2018).
33. 佐藤歓, 小柳津研一, “酸化還元活性な高分子による集合組織の動的制御”『2018年の化学: 最新のトピックス』, 化学, 73, 70-71 (2018).
32. 小柳津研一, “高純度ポリフェニレンスルフィドの合成化学”, ENEOS Technical Review, 59, 11-14 (2017).
31. F. Aida, K. Oyaizu,* “Emerging Organosulfonium Electrophiles as Unique Reagents for Carbon-sulfur Bond Formation: Prospects in Synthetic Chemistry of Organosulfur Compounds”, Chem. Lett.(Highlight Review), 45, 102-109 (2016). DOI: 10.1246/cl.151035
30. 小柳津研一, “導電性高分子, ポリアニリンをつくる”, PolySCHOLAつくる, 高分子, 64, 445-447 (2015).
29. 小柳津研一, “高密度レドックス分子を用いた有機電池”, 応用物理学会有機分子・バイオエレクトロニクス分科会誌, 25, 283-287 (2014).
28. 小柳津研一, 西出宏之, “空気電池:有機負極を目指したポリマー膜の設計”, 膜, 38, 131-136 (2013). DOI: 10.5360/membrane.38.131​​​​​​​
Energy storage by organic redox-active molecules is based on the electromotive force produced from a couple of molecules which are different in redox potentials. Reversible and high-density charge storage by redox polymers ( [Red/Ox]polym ) require charge transport and electroneutralization by electrolyte ions throughout the polymer layer populated in high density with the redox-active groups. Charging/discharging capabilities are accomplished by fabricating organic rechargeable air batteries ((-) M | [Red]polym ↔ [Ox]polym | KOH, H2O | C (catalyst), O2 (+)), using polymer layers as the anode-active material which undergo reversible charging at potentials more negative than that of O2. Nonconjugated polymers with various types of main chains populated with anthraquinone derivatives per repeating unit have been synthesized with a view to unravel their charge transport and storage properties based on the n-type redox reactions. Anthraquinone-functionalized polymers have been proposed as a new class of anodeactive materials with negative charge storage properties and large redox capacities, as a result of the capability of using almost all of the redox sites in the polymer. The polymer/carbon composite layer allowed efficient swelling of the polymer in aqueous electrolyte solutions, giving rise to the rechargeable air battery effect with more than 500 charge/discharge cycle performances.
27. K. Nakahara, K. Oyaizu, H. Nishide, “Organic Radical Battery Approaching Practical Use”, Chem. Lett. (Highlight Review), 40, 222-227 (2011). DOI: 10.1246/cl.2011.222​​​​​​​
26. K. Oyaizu, “Radical Polymers with Ultimate Population of Unpaired Electrons”, 高分子, 59, 390 (2010).
25. K. Oyaizu, H. Nishide, “Radical Polymers for Organic Electronics: A Radical Departure from Conjugated Polymers?”,Adv. Mater., 21, 2339-2344 (2009). DOI: 10.1002/adma.200803554
24. H. Nishide, K. Oyaizu, “Toward Flexible Batteries”, Science, 319, 737-738 (2008). DOI: 10.1126/science.115183
23. 小柳津研一, “ラジカル電池:有機ラジカルポリマーの電極反応に基づく二次電池”, 化学と教育, 56, 118-119 (2008). DOI: 10.20665/kakyoshi.56.3_118
しなやかで軽く,(半)透明にもできる新型電池が誕生した。有機ラジカルポリマーを電極活物質に用いたラジカル電池と呼ばれる二次電池である。電気を繰り返し大容量で蓄えることができ,フル充電・放電に1分もかからない優れた出力特性を備え,安全かつ環境適合でもある画期的な電池として,様々な用途開拓が始まっている。
22. 小柳津研一, 湯浅真, “非貴金属とポリピロールのコンポジットからなる燃料電池触媒”, 高分子, 56, 153 (2007).
21. 小柳津研一, 湯浅真, “金属錯体を用いた新しいカソード触媒の開発”, ケミカルエンジニヤリング, 52, 175-180 (2007).
20. 小柳津研一, “ポリチオフェニレンの新規合成法”, 高分子, 55, 888 (2006).
19. 湯浅真, 小柳津研一,村田英則, “高分子錯体ナノ薄膜を活用した固体高分子形燃料電池系カソード触媒”, ケミカルエンジニヤリング, 51, 353-356 (2006).
18. 小柳津研一, “電子・スピン機能材料としてのπ共役系縮合環ポリマー”『Interface』, 日本化学会コロイドおよび界面化学部会ニュースレター, 31(2), 2-5 (2006).
17. 小柳津研一, 湯浅真, “燃料電池開発の現状と将来”, 理大科学フォーラム, 263, 32-38 (2006).
16. 湯浅真, 小柳津研一,村田英則, “スーパーオキシドジスムターゼミミックス: その分子設計とナノバイオ応用”, オレオサイエンス, 6, 307-317 (2006). DOI: 10.5650/oleoscience.6.307​​​​​​​
スーパーオキシドアニオンラジカル (O2-・) を消去する酵素であるスーパーオキシドジスムターゼ (SOD) のミミックスについての最近の話題を紹介する。修飾ヘムタンパク質,高分子結合金属ポルフィリン錯体,金属ポルフィリン錯体導入リボソーム等の高分子系SODミミックスについて述べる。特に,高分子系SODミミックスの分子設計とナノバイオ応用について詳説する。
15. 小柳津研一, 湯浅真, “対流ボルタンメトリー(2)(回転リング-ディスク電極系)”『電気化学: 測定と解析のてびき』, Electrochemistry, 74, 81-83 (2006). DOI: 10.5796/electrochemistry.74.81
14. 小柳津研一, 湯浅真, “対流ボルタンメトリー(1)(概要および回転ディスク電極系)”『電気化学: 測定と解析のてびき』, Electrochemistry, 73, 1060-1063 (2005). DOI: 10.5796/electrochemistry.73.1060
13. 小柳津研一, 湯浅真, “電解重合性ポルフィリン錯体の設計と活性酸素センサーへの応用”, 表面, 43, 1-6 (2005).
12. 小柳津研一, 湯浅真, “高分子錯体を用いた燃料電池用酸素還元触媒”, 膜, 30, 254-259 (2005). DOI: 10.5360/membrane.30.254
The direct four-electron reduction of O2 to H2O is an important issue in developing efficient cathode catalysts for fuel cells.  Cobaltporphyrins have been demonstrated to serve as catalysts for the four-electron reduction of O2, especially in the forms of dicobalt cofacial porphyrins and multinuclear cobaltporphyrins. Simple cobaltporphyrins with spontaneous face-to-face aggregation properties are also expected as efficient catalysts. For practical application as fuel cell cathode catalysts, it is necessary to use cobaltporphyrins dispersed on carbon particles with high surface area. Here we summarize the recent developments on porphyrin-based catalysts, and describe our attempts to prepare face-to-face aggregates of cobaltporphyrins adsorbed dispersively on carbon black. The catalyst was prepared by using a homogenizer in mixing cobaltporphyrin and carbon black, which gave rise to electroreduction of O2 at a remarkably positive potential and showed a high selectively for the direct four-electron reduction process.
11. 小柳津研一, 湯浅真, “サイクリックボルタンメトリー(4)(電極吸着系および電極触媒系の特徴と観測例)”『電気化学: 測定と解析のてびき』, Electrochemistry, 73, 460-463 (2005). DOI: 10.5796/electrochemistry.73.460​​​​​​​
10. M. Yuasa, K. Oyaizu, “Electrochemical Detection and Sensing of Reactive Oxygen Species”, Curr. Org. Chem., 9, 1685-1697 (2005). DOI: 10.2174/138527205774610921​​​​​​​
Reactive oxygen species (ROS) such as superoxide anion radical (O2-. ) play an essential role on normal cellular growth and homeostasis. However, excess ROS generated by perturbing O2-. homeostasis under various conditions of oxidative stress induce high radical toxicity, resulting in many diseases such as cancer, brain and myocardial infarction, and inflammation. Quantitative analysis of O2-. by a convenient method is a subject of intense research, since most of ROS are derived from O2-. . In situ real-time measurement of O2-. is very important to understand the relevance of ROS to many diseases. Recent progress in electrochemical sensors for the facile detection of O2-. , including biosensors utilizing a variety of metalloproteins as sensing elements for O2-. and very recently developed all-synthetic sensors with a high selectivity for O2-. detection, is reviewed. Emphasis is placed on the possibility of the all-synthetic sensor for convenient in vivo measurement of ROS.
9. 湯浅真, 小柳津研一, “In vivo活性酸素種センサーの研究開発”, 化学と教育, 53, 128-131 (2005). DOI: 10.20665/kakyoshi.53.3_128
スーパーオキシドアニオンラジカル (O2-・) などの活性酸素種 (ROS) は,生命現象を支える不可欠因子であると共に,その恒常性が崩れて酸化ストレス状態になると,余剰のROSがラジカル毒性を発現するため,癌や老化の原因にもなる。O2-・の酸化電流を検出する全合成型の電気化学ROSセンサーを用いて,化学的に不安定なO2-・を迅速にin vivo (生体内で) 計測できるようになってきたので紹介する。
8. 小柳津研一, 湯浅真, “金属ポルフィリンの分子集合系および多核錯体系を用いた酸素還元触媒”, 高分子加工, 54, 88-93 (2005).
7. 湯浅真, 小柳津研一, “鉄系材料の防食塗料としてのポリアニリン含有塗料”, 色材協会誌, 77, 26-33 (2004). DOI: 10.4011/shikizai1937.77.26
6. 小柳津研一, 湯浅真, “協奏的多電子移動系の構築とその機能開拓”, 表面, 41, 22-33 (2004).
5. E. Tsuchida, K. Oyaizu, “Oxovanadium(III-V) Mononuclear Complexes and Their Linear Assemblies Bearing Tetradentate Schiff Base Ligands: Structure and Reactivity as Multielectron Redox Catalysts”, Coord. Chem. Rev., 237, 213-228 (2003). DOI: 10.1016/S0010-8545(02)00251-5​​​​​​​
This review summarizes the recent advances in the chemistry of oxovanadium(III–V) mononuclear complexes and their linear assemblies bearing tetradentate Schiff base ligands. Structural parameters of the oxovanadium assemblies are compiled, which reveal the preference of specific coordination geometries around vanadium atoms according to the valence state. Emphasis is placed on the catalysis of multielectron redox reactions by oxovanadium(IV) complexes which disproportionate to vanadium(III) and oxovanadium(V) complexes under suitable conditions. Their biological implications and synthetic applications are described.
4. E. Tsuchida, K. Oyaizu, “Alkylsulfonioarylene and Thioarylene Polymers Derived from Sulfonium Electrophiles” (Selected as a paper of special interest in the opinion of referees and the Editorial Board), Bull. Chem. Soc. Jpn.(Accounts), 76, 15-47 (2003). DOI: 10.1246/bcsj.76.15​​​​​​​
Superacidification of sulfoxides and sulfinates effects the electrophilic substitution reaction of the resulting hydroxysulfonium ions onto aromatic rings with the elimination of H2O at room temperature. The present account emphasizes the utility of the reaction for use as an elementary step in organic synthesis. The product, the alkyldiarylsulfonium ion, often quantitatively obtained, allows the synthesis of alkylsulfonio-bridged (λ4-alkylsulfanyliumdiyl) aromatic polymers. High molecular-weight poly(alkylsulfonioarylene) salts with a wide range of structural dimensionalities from linear to network architectures have been made accessible by the regioselective condensation of aryl sulfoxides. The polymers possess interesting properties such as good solubility in polar organic solvents and sometimes even in H2O, susceptibility to nucleophiles to provide thioarylene derivatives, photo-degradability, and electric semiconductivity, according to the dimensionality of the molecule. The synthetic chemistry of the alkylsulfonioarylene polymers as well as their possible applications in high molecular-weight poly(thioarylene) synthesis, photochemical recycling processes of an engineering plastic poly(thio-1,4-phenylene), and photo-resist technologies, are reviewed.
3. 小柳津研一, “ヘテロポリアセンの合成と機能”, 高分子加工, 51, 548-553 (2002).
2. 小柳津研一, “磁極で操る電極反応: 界面電子移動における磁気効果”『2002年の化学: 注目の論文』,化学,57, 56-57 (2002).
1. 土田英俊, 山元公寿,小柳津研一, “多電子過程と分子変換”『1994年の化学』, 化学, 49, 74-75 (1994).

You may also like

Back to Top