2010
137. K. Oyaizu, T. Kawamoto, T. Suga, H. Nishide, “Synthesis and Charge Transport Properties of Redox-active Nitroxide Polyethers with Large Site Density”, Macromolecules, 43, 10382-10389 (2010). DOI: 10.1021/ma1020159
136. X. Zhuang, C. Xiao, K. Oyaizu, N. Chikushi, X. Chen, H. Nishide, “Synthesis of Amphiphilic Block Copolymers Bearing Stable Nitroxyl Radicals”, J. Polym. Sci., A, 48, 5404-5410 (2010). DOI: 10.1002/pola.24345
We present here the synthesis of two kinds of amphiphilic block copolymers, a diblock copolymer MPEG-b-PTAm and a triblock copolymer MPEG-b-PLA-b-PTAm, which can self-assemble into micelles with nitroxyl radicals-containing PTAm segment in the core.
135. T. Hyakutake, J. Y. Park, Y. Yonekuta, K. Oyaizu, H. Nishide, R. Advincula, “Nanolithographic Patterning via Electrochemical Oxidation of Stable Poly(nitroxide radical)s to Poly(oxoammonium salt)s”, J. Mater. Chem.,20, 9616-9618 (2010). DOI: 10.1039/c0jm02241a
134. T. Murakami, F. Kato, K. Oyaizu, H. Nishide, “Porphyrin-dye Sensitized Solar Cell Utilizing Nitroxide Radical Mediator”, J. Photopolym. Sci. Technol., 23, 353-355 (2010). DOI: 10.2494/photopolymer.23.353
133. K. Koshika, N. Chikushi, N. Sano, K. Oyaizu, H. Nishide, “A TEMPO-substituted Polyacrylamide as a New Cathode Material: an Organic Rechargeable Device Composed of Polymer Electrodes and Aqueous Electrolyte”, Green. Chem., 12, 1573-1575 (2010). DOI: 10.1039/B926296B
132. S. Yoshihara, H. Isozumi, M. Kasai, H. Yonehara, Y. Ando, K. Oyaizu, H. Nishide, “Improving Charge/discharge Properties of Radical Polymer Electrodes Influenced Strongly by Current Collector/carbon Fiber Interface”, J. Phys. Chem. B, 114, 8335-8340 (2010). DOI: 10.1021/jp1019526
131. X. Zhuang, H. Zhang, N. Chikushi, C. Zhao, K. Oyaizu, X. Chen, H. Nishide, “Biodegradable and Electroactive TEMPO-substituted Acrylamide/Lactide Copolymer”, Macromol. Biosci., 10, 1203-1209 (2010). DOI: 10.1002/mabi.201000031
130. K. Oyaizu, A. Hatemata, W. Choi, H. Nishide, “Redox-active Polyimide/carbon Nanocomposite Electrodes for Reversible Charge Storage at Negative Potentials: Expanding the Functional Horizon of Polyimides”, J. Mater. Chem., 20, 5404-5410 (2010). DOI: 10.1039/C0JM00042F
129. T. Ibe, S. Kaiho, K. Oyaizu, H. Nishide, “Electronic Communication in the Formation of a Quartet Molecule 2,6,10-Tris[bis(p-methoxyphenyl)aminium]triphenylene”,Chem. Lett., 39, 356-357 (2010). DOI: 10.1246/cl.2010.356
128. F. Kato, N. Hayashi, T. Murakami, C. Okumura, K. Oyaizu, H. Nishide, “Nitroxide Radicals for Highly Efficient Redox Mediation in Dye-sensitized Solar Cells”, Chem. Lett., 39, 464-465 (2010). DOI: 10.1246/cl.2010.464
127. X.Zhuang, K.Oyaizu, Y.Niu, K.Koshika, X.Chen, H.Nishide,“Synthesis and Electrochemistry of Schiff Base Cobalt(III)Complexes and Their Catalytic Activity for Copolymerization of Epoxide and Carbon Dioxide”, Macromol. Chem. Phys., 211, 669-676 (2010). DOI: 10.1002/macp.200900472
2009
126. T. Suga, S. Takeuchi, T. Ozaki, M. Sakata, K. Oyaizu, H. Nishide, “Synthesis of Poly(oxoammonium salt)s and Their Electrical Properties in the Organic Thin Film Device”, Chem. Lett., 38, 1160-1161 (2009). DOI: 10.1246/cl.2009.1160
125. K. Koshika, N. Sano, K. Oyaizu, H. Nishide, “An Aqueous Electrolyte-type Rechargeable Device Utilizing a Hydrophilic Radical Polymer-cathode”, Macromol. Chem. Phys., 210, 1989-1995 (2009). DOI: 10.1002/macp.200900257

124. K. Koshika, M. Kitajima, K. Oyaizu,H. Nishide, “A Rechargeable Battery Based on Hydrophilic Radical Polymer-electrode and Its Green Assessment”, Green Chem. Lett. Rev., 2, 169-174 (2009). DOI: 10.1080/17518250903251775
A hydrophilic radical polymer electrode-based rechargeable battery was designed along the concept of green chemistry. A hydrophilic radical polymer, poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl vinylether), was synthesized as an electrode-active material; its battery demonstrated a high charging–discharging rate and long cycle life.
123. H. Nishide, K. Koshika, K. Oyaizu, “Environmentally Benign Batteries Based on Organic Radical Polymers”, Pure Appl. Chem., 81, 1961-1970 (2009). DOI: 10.1351/PAC-CON-08-12-03
A radical polymer is an aliphatic organic polymer bearing densely populated un-paired electrons in the pendant robust radical groups per repeating unit. These radicals’ un-paired electrons are characterized by very fast electron-transfer reactivity, allowing reversible charging as the electrode-active materials for secondary batteries.
122. R. Sone, I. Takemura, K. Oyaizu, H. Nishide, “Chiral Alkylated Poly(m-phenylene)s: Optical Activity and Thermal Stability of Helical Structures”, Synth. Met., 159, 925-930 (2009). DOI: 10.1016/j.synthmet.2009.01.057
Chiral poly[4,6-bis(alkylthio)-1,3-phenylene-alt-2-methyl-1,3-phenylene] was synthesized from 1,3-dibromo-2,6-bis(3-dodecyl-2-methylthio)benzene and 2-methyl-1,3-phenylenebis(pinacol borate) as a precursor of chiral poly(thiaheterohelicene).
121. T. Suga, H. Ohshiro, S. Sugita, K. Oyaizu, H. Nishide, “Emerging N-Type Redox Active Radical Polymer for a Totally Organic Polymer-Based Rechargeable Battery”, Adv. Mater., 21, 1627-1630 (2009). DOI: 10.1002/adma.200803073
120. K. Koshika, N. Sano, K. Oyaizu, H. Nishide, “An Ultrafast Chargeable Polymer Electrode Based on the Combination of Nitroxide Radical and Aqueous Electrolyte”, Chem. Commun., 836-838 (2009). DOI: 10.1039/B818087C
2008
119. H. Murata, T. Sato, K. Oyaizu, T. Furuya, Y. Takebayashi, S. Yoda, K. Otake, M. Yuasa, “Synthesis of Poly(2,6-dimethyl-1,4-phenylene oxide) by Double-step Polymerization in Supercritical Carbon Dioxide”, Kobunshi Ronbunshu, 65, 688-694 (2008). DOI: 10.1295/koron.65.688
Oxidative polymerization of 2,6-dimethylphenol (2,6-DMP) is a convenient method to prepare poly(2,6-dimethyl-1,4-phenyleneoxide) (PPO), an important plastic in engineering. The polymerization of 2,6-DMP is carried out in organic solvents under oxygen. A solvent-recovery system and an anti-explosive reactor are required for the industrial application. The use of scCO2 instead of organic solvents is expected to make the polymerization of 2,6-DMP safer and environmentally more benign. We have studied the oxidative polymerization of 2,6-DMP in scCO2.
118. M. Shoji, K. Oyaizu, H. Nishide, “Facilitated Oxygen Transport through A Nafion Membrane Containing Cobaltporphyrin as a Fixed Oxygen Carrier”, Polymer,49, 5659-5664 (2008). DOI: 10.1016/j.polymer.2008.10.016
117. K. Oyaizu, Y. Ando, H. Konishi, H. Nishide, “Nernstian Adsorbate-like Bulk Layer of Organic Radical Polymers for High-density Charge Storage Purposes”, J. Am. Chem. Soc., 130, 14459-14461 (2008). DOI: 10.1021/ja803742b
116. K. Oyaizu, T. Suga, K. Yoshimura, H. Nishide, “Synthesis and Characterization of Radical-bearing Polyethers as an Electrode-active Material for Organic Secondary Batteries”, Macromolecules,41, 6646-6652 (2008). DOI: 10.1021/ma702576z
115. K. Hiraka, M. Kanehisa, M. Tamai, S. Asayama, S. Nagaoka, K. Oyaizu, M. Yuasa, H. Kawakami, “Preparation of pH-Sensitive Liposomes Retaining SOD mimic and Their Anticancer Effect”, Colloids Surf. B, 67, 54-58 (2008). DOI: 10.1016/j.colsurfb.2008.07.014
We prepared an anticancer drug based on a pH-sensitive liposome retaining Fe-porphyrin as an SOD mimic.
114. M. Yuasa, K. Oyaizu, H. Murata, Y. Toyoda, M. Namba, M. Shitara, “Synthesis of Six-coordination Proximal Base Conjugation Iron(III) Porphyrin Complexes and Evaluation as a Superoxide Sensor”,Kobunshi Ronbunshu, 65, 349-354 (2008). DOI: 10.1295/koron.65.349
Reactive oxygen species (ROS) such as the superoxide anion radical (O2•) play an essential role on normal cellular growth and homeostasis. However, excess ROS generated by perturbing O2• homeostasis under various conditions of oxidative stress induce high radi- cal toxicity, resulting in many diseases such as a cancer, brain and mitocondrial infarction, and inflammation. Therefore, quantitative measurement of O2• in vivo is important for clarifying their relationship under various conditions.
113. H. Murata, Y. Ito, T. Shimpo, K. Oyaizu, M. Yuasa, “Construction of Manganese Porphyrin Modified Hemoglobin Complex and Its Antioxidant Activities”, Kobunshi Ronbunshu, 65, 277-282 (2008). DOI: 10.1295/koron.65.277
Manganese 5,10,15,20-tetrakis(N-methyl-2-yl)porphyrin was introduced to hemoglobin to use it as a drug carrier.
112. Y. Takahashi, N. Hayashi, K. Oyaizu, K. Honda, H. Nishide, “Totally Organic Polymer-based Electrochromic Cell Using TEMPO-substituted Polynorbornene as a Counter Electrode-active Material”,Polym. J., 40, 763-767 (2008). DOI: 10.1295/polymj.PJ2008071
An electrochromic cell using a viologen-based polymer and a radical polymer bearing a redox-active 2,2,6,6-tetramethylpiperidin-N-oxyl group per repeating unit was fabricated.
111. H. Murata, K. Oyaizu, M. Komuro, R. Awa, H. Tsukioka, T. Saotome, M. Yuasa, “Preparation of Novel Gold Nanoparticles Modofoed with Thiol-substituted Porphyrin and Their Derivatives”,J. Jpn. Soc. Colour Mater., 81, 37-42 (2008). DOI: 10.4011/shikizai.81.37
We synthesized novel porphyrin having thiol group which can be absorbed onto gold surface in order to obtain porphyrin-modified gold nanoparticles.
110. I. Moreno-Villoslada, M. Soto, F. González, F. Montero-Silva, S. Hess, I. Takemura, K. Oyaizu, H. Nishide, “Reduction of 2,3,5-Triphenyl-2H-tetrazolium Chloride in the Presence of Polyelectrolytes Containing 4-Styrenesulfonate Moieties”, J. Phys. Chem. B, 112, 5350-5354 (2008). DOI: 10.1021/jp712093v
The redox behavior of 2,3,5-triphenyl-2H-tetrazolium chloride in the presence of different polyelectrolytes such as poly(sodium 4-styrenesulfonate), poly(sodium 4-styrenesulfonate-co-sodium maleate) at two different comonomer compositions, poly(sodium acrylate-co-sodium maleate), and poly(sodium acrylate) is studied.
109. K. Oyaizu, H. Murata, D. Yoshii, T. Ishikawa, M. Yuasa, “Synthesis and Properties of Poly(phenylene ether) Diblock Copolymers Bearing Acid Substituents”, Kobunshi Ronbunshu,65, 145-149 (2008). DOI: 10.1295/koron.65.145
We report the preparation of poly(2,6-dimethyl-1,4-phenylene ether) diblock copolymers bearing carboxylic or sulfonic acid as acid substituents.
2007
108. H. Murata, Y. Iai, T. Otake, K. Oyaizu, K. Kozawa, M. Yuasa, “Synthesis of Cobalt Complex Using Pyrrole Derivative with Basic Ligand and Application to Cathodic Catalyst for Oxygen Reduction”, Electrochemistry, 75, 964-968 (2007). DOI: 10.5796/electrochemistry.75.964
A ligand with strong coordinating property, 2-(1H-pyrrole-3-yl) pyrazine, was synthesized to increase the density of active sites for oxygen reduction. The obtained compound was coordinated with cobalt (II) ions strongly.
107. M. Yuasa, K. Oyaizu, H. Murata, K. Ikkanda, K. Tanaka, T. Imai, “Preparation of Cathodic Catalyst for Fuel Cell Using Cobalt-polypyrrole Complex Containing Basic Compound and Their Catalytic Activities for Oxygen Reduction”, Mater. Technol., 25, 313-319 (2007).
We have reported that carbon particle modified with a cobalt-polypyrrole complex was a good electrocatalyst for the reduction of oxygen. In this paper, we have chosen aniline as a monomer, and the mixture of aniline and pyrrole was electropolymerized under the condition of suspension with carbon black in an electrolyte solution.
106. H. Murata, K. Oyaizu, M. Hoshino, Y. Yokota, M. Yuasa, “Electrochemical Synthesis of Polyaniline Film in Supercritical Carbon Dioxide as a Solvent”, Kobunshi Ronbunshu, 64, 812-816 (2007). DOI: 10.1295/koron.64.812
A conductive polyaniline film was successfully synthesized in a homogeneous supercritical carbon dioxide/acetonitrile system.
105. Y. Yonekuta, K. Susuki, K. Oyaizu, K. Honda, H. Nishide, “Battery-inspired Non-volatile and Rewritable Memory Architectures: a Radical Polymer-based Organic Device”, J. Am. Chem. Soc., 129, 14128-14129 (2007). DOI: 10.1021/ja075553p
104. M. Yuasa, K. Oyaizu, H. Murata, S. Ohseki, T. Aoki, “Evaluation of O2-・Scavenging Activities of Antioxidant Compounds Using an Electrochemical Superoxide Sensor”, Mater. Technol., 25, 175-181 (2007).
Reactive oxygen species (ROS) such as superoxide play essential roles on homeostasis in vivo. However, excess ROS generated by perturbing homeostasis under various conditions of oxidative stresses induce high radical toxicity, resulting in many diseases. Much attention has been paid to antioxidant compounds scavenging ROS. We have developed an electrochemical sensor to detect ROS.
103. M. Yuasa, K. Oyaizu, H. Murata, K. Tanaka, M. Yamamoto, S. Sasaki, “Electrocatalytic Activities for the Reduction of Oxygen at Carbon Particles Modified with Polypyrrole Including Various Metal Ions as Electrocatalytic Sites”, Electrochemistry, 75, 800-806 (2007). DOI: 10.5796/electrochemistry.75.800
We report that carbon black modified with cobalt and various transition metal ions (M) incorporated in a polypyrrole film (Co+MPPy/C) are good electrocatalysts for the reduction of oxygen.
102. Y. Takahashi, K. Oyaizu, K. Honda, H. Nishide, “Low-energy Driven Electrochromic Devices Using Radical Polymer as Transparent Counter Electroactive Material”, J. Photopolym. Sci. Technol., 20, 29-34 (2007). DOI: 10.2494/photopolymer.20.29
Electroactive and transparent organic radical polymers offered a novel design of materials for electrochromic devices.
101. Y. Yonekuta, K. Oyaizu, H. Nishide, “Structural Implication of Oxoammonium Cations for Reversible Organic One-electron Redox Reaction to Nitroxide Radicals”, Chem. Lett., 36, 866-867 (2007). DOI: 10.1246/cl.2007.866
100. H. Kawakami, K. Hiraka, M. Tamai, A. Horiuchi, A. Ogata, T. Hatsugai, A. Yamaguchi, K. Oyaizu, M. Yuasa, “pH-sensitive Liposome Retaining Fe-porphyrin as SOD Mimic for Novel Anticancer Drug Delivery System”, Polym. Adv. Technol., 18, 82-87 (2007). DOI: 10.1002/pat.855

The novel design of an anticancer drug delivery system is reported based on a pH-sensitive liposome retaining the Fe-porphyrin as a superoxide dismutase (SOD) mimic.
99. M. Yuasa, K. Oyaizu, K. Eguchi, Y. Toyoda, “Quantitative Analysis of Active Oxygen Species by Potentiometry”, Kobunshi Ronbunshu, 64, 90-95 (2007). DOI: 10.1295/koron.64.90

We have developed a superoxide sensor composed of a thin film of 1-methylimidazole coordinated bromoiron(III) meso-tetrathienyleporphyrin for the electrochemical detection. In this study, highly sensitive measurements of the superoxide by potentiometry were conducted.
98. M. Yuasa, K. Oyaizu, H. Murata, M. Komuro, R. Awa, A. Ohkubo, “Synthesis of Cationic Manganese Porphyrin Bearing Alkylsulfonio Groups and Evaluation of Their Antioxidant Activities”,J. Oleo Sci., 56, 95-101 (2007). DOI: 10.5650/jos.56.95
A water-soluble cationic 5, 10, 15, 20-tetrakis(2-dimethylsulfoniophenyl)-porphinatomanganese(III) ion and a 5, 10, 15, 20-tetrakis(4-dimethylsulfoniophenyl)porphinatomanganese(III) ion were synthesized as superoxide dismutase mimics which were introduced into PEG-liposome composed of dimyristoylphosphatidylcholine and Pluronic F-68 to examine the effect of the liposome on the capacity for use as drug delivery system to maintain and perpetuate blood circulation.
97. M. Yuasa, K. Oyaizu, H. Murata, Y. Sahara, T. Hatsugai, A. Ogata, “Antioxidant and Anticancer Properties of Metalloporphyrins Embedded in Liposomes”, J. Oleo Sci., 56, 87-93 (2007). DOI: 10.5650/jos.56.87
We designed PEG modified liposomes for avoiding reticuloendothelial system and embedded cationic metalloporphyrins for DDS, and evaluated the antioxidant and anticancer properties.
96. M. Yuasa, K. Oyaizu, H. Murata, T. Kobayashi, C. Kobayashi, “Fabrication of Sensor for Reactive Oxygen Species Using Gold Electrodes Modified with Electropolymerized Porphyrins and Application for Detection of Stress of Plants”, J. Oleo Sci., 56, 81-86 (2007). DOI: 10.5650/jos.56.81
Iron meso-tetrakis(3-thienyl)porphyrin complexes were electropolymerized onto a Au wire electrode. The modified Au electrode were applied to superoxode sensor to detect catalytic oxidation current of the superoxide which was generated as an intermediate during the oxidation of xanthine by catalystic XOD.
2006
95. M. Yuasa, N. Momozawa, K. Oyaizu, Y. Ohtani, K. Sugawara, “Methods for Prediction of Gold Plating Characteristics by Numerical Analysis”, J. Sur. Finish. Soc. Jpn., 57, 789-792 (2006). DOI: 10.4139/sfj.57.789
Methods for prediction of gold plating characteristics by numerical analysis were investigated.
94. M. Yuasa, K. Oyaizu, M. Kitao, K. Fujita, “Investigation of Carbon Materials as Supports for Metalloporphyrins Used for Cathode Catalysts in Fuel Cells”, Kobunshi Ronbunshu, 63, 607-612 (2006). DOI: 10.1295/koron.63.607
meso-Substituted cobalt porphyrins adsorbed on carbon materials were prepared by using a homogenizer in mixing cobalt tetraethylporphyrin and various carbon materials. These electrocatalysts gave rise to electroreduction of oxygen at a remarkably positive potential (0.44 V versus saturated calomel electrode) and showed a high selectivity for the four-electron reduction (n = 3.9).
93. K. Oyaizu, M. Hoshino, M. Ishikawa, T. Imai, M. Yuasa, “Synthesis and Characterization of A p-Conjugated Hybrid of Oligothiophene and Porphyrin”, J. Polym. Sci., A, 44, 5403-5412 (2006). DOI: 10.1002/pola.21596
92. M. Yuasa, K. Oyaizu, H. Murata, M. Ishikawa, S. Tsutsui, M. Namba, “Fabrication of Electrodes for Highly Sensitive Detection of a Superoxide Anion Radical by Electropolymerization of Thienylporphyrins in the Presence of Thiophene and Application to Active Oxygen Sensors”, Kobunshi Ronbunshu, 63, 427-431 (2006). DOI: 10.1295/koron.63.427
We have developed a superoxide sensor composed of a thin film of 1-methylimidazole-coordinated iron meso-tetra(3-thienyl)porphyrin for the electrochemical detection of the superoxide.
91. M. Yuasa, K. Oyaizu, H. Murata, K. Tanaka, M. Yamamoto, “Improved Activity of Cathode Catalysts for Fuel Cells by Optimizing the Conditions for Preparation of Carbon Particles Modified with Cobalt-polypyrrole Complex”, Kobunshi Ronbunshu, 63, 601-606 (2006). DOI: 10.1295/koron.63.601
Carbon nanoparticles modified with a cobalt-adsorbed polypyrrole film were found to be a good electrocatalyst for oxygen reduction.
90. Y. Shiba, Y. Nakamura, K. Oyaizu, M. Yuasa, “Preparation of Hollow Fine Particles by Polymerization of Vesicles and Their Application to Functional Materials”, J. Jpn. Soc. Colour Mater., 79, 237-242 (2006). DOI: 10.4011/shikizai1937.79.237
We focused on hollow fine particles formed by polymerization of vesicles as functional materials which have low density and good heat isolation. The polymerizable vesicles were prepared by mixing of vinylbenzyltrimethylammonium chloride as a polymerizable cation surfactant, sodium dodecyl sulfate as an anion surfactant , and divinylbenzene as a cross-linker in water.
89. K. Oyaizu, Y. Shiba, Y. Nakamura, M. Yuasa, “Highly Stable Polymerizable Vesicles in Anionic Surfactant/Ammonium Salt Mixtures in the Presence of Cross-linking Monomers for Convenient Preparation of Hollow Nanospheres”, Langmuir, 22, 5261-5265 (2006). DOI: 10.1021/la053369g
88. K. Oyaizu, A. Yamaguchi, Y. Iai, K. Tanaka, M. Yuasa, “Preparation of Novel Conductive Polymer Ligand-coated Carbon Particles by Electropolymerization of Pyridylthiophene and Application as Metal Complex Catalysts for Oxygen Reduction”, Kobunshi Ronbunshu, 63, 189-195 (2006). DOI: 10.1295/koron.63.189
Conductive polymer ligand-coated carbon particles were prepared by a fluid-bed electrolysis of 2-(3-pyridyl)thiophene using carbon particles as a working electrode.
87. M. Yuasa, K. Oyaizu, A. Yamaguchi, T. Imai, M. Kitao, “Novel Electrocatalysts for Oxygen Reduction Using Cobaltporphyrins That Undergo Facile Electropolymerization”, Kobunshi Ronbunshu, 63, 182-188 (2006). DOI: 10.1295/koron.63.182
[Meso-tetra(thiophen-3-yl)porphinato]cobalt(II)(CoT3ThP) complex, which undergoes facile electropolymerization, was synthesized by the dehydro-condensation reaction of pyrrole and 3-thienylaldehyde.
86. Y. Ohtani, K. Sugawara, K. Nemoto, A. Shiozawa, A. Yamaguchi, K. Oyaizu, M. Yuasa, “Investigations of Bath Compositions and Operating Conditions of Gold Plating Using Hydantoin-gold Complex”, J. Sur. Finish. Soc. Jpn., 57, 167-171 (2006). DOI: 10.4139/sfj.57.167
Effects of the bath conditions and the plating conditions for gold plating using 5,5-dimethylhydantoin-gold complex on decomposition were investigated.
85. A. Yamaguchi, R. Sano, K. Oyaizu, M. Yuasa, “Stepwise Direct Synthesis of Aluminosilicate Mesoporous Materials for Catalyst Supports”, J. Jpn. Soc. Colour Mater., 79, 47-54 (2006). DOI: 10.4011/shikizai1937.79.47
Aluminosilicate mesoporous materials (AIMS) were synthesized by two different methods. In “stepwise direct synthesis” of AIMS, sodium aluminate was added at the second ageing after the first ageing of sodium silicate and surfactant mixtures with the purpose of Al incorporation on or near the surface region of the pore wall in order to provide easily accessible ion-exchange sites. Most of the Al atoms in the AIMS prepared by the “stepwise direct synthesis” were present as tetrahedral-coordinated framework in the resulting mesostructured aluminosilicate of hexagonal symmetry.
84. K. Oyaizu, A. Yamaguchi, T. Hayashi, Y. Nakamura, D. Yoshii, Y. Ito, M. Yuasa, “Controlled Oxidation of Dextran for Evolution of Polyether Segment Bearing Pendant Carboxyl Groups for Corrosion Inhibition Applications”, Polym. J., 38, 343-348 (2006). DOI: 10.1295/polymj.38.343
Partially oxidized dextran containing carboxyl groups was prepared as an environmentally benign organic corrosion inhibitor for mild steel.
83. H. Takahashi, T. Miyamoto, Y. Takahashi, R. Horino, M. Fujino, K. Nakamura, M. Yamada, Y. Yamamoto, T. Oohashi, S. Tsutsui, M. Nanba, K. Oyaizu, M. Yuasa, “Development of Method for Rapid Measurement of Blood Reactive Oxygen Species in Calves”, Bull. Natl. Inst. Anim. Health, 112, 25-31 (2006). DOI: 10.24514/00002081
An electrochemical sensor for reactive oxygen species like the superoxide anion radical using polymeric iron porphyrin complexes was developed. This experiment was designed to develop a method for rapid measurement of reactive oxygen species in calf blood by employing this technique.
82. A. Yamaguchi, T. Awano, K. Oyaizu, M. Yuasa, “Surface-modified Mesoporous Silicas as Recyclable Adsorbents of an Endocrine Disrupter, Bisphenol A”, J. Nanosci. Nanotechnol., 6, 1689-1694 (2006). DOI: 10.1166/jnn.2006.229
Surface-modified mesoporous silicas were investigated for recyclable adsorption of an endocrine disrupter, bisphenol A.
81. Y. Ohtani, A. Horiuchi, A. Yamaguchi, K. Oyaizu, M. Yuasa, “Non-cyanide Electroless Gold Plating Using Polyphenols as Reducing Agents”, J. Electrochem. Soc., 153, C63-C66 (2006). DOI: 10.1149/1.2133716​​​​​​​
Polyphenol compounds were investigated as reducing agents for non-cyanide electroless gold plating for electronics assembly applications.

You may also like

Back to Top