2015
173. F. Aida, S. Yamaguchi, Y. Takatori, K. Nagamatsu, D. Kiyokawa, K. Oyaizu,* H. Nishide,* “Vanadyl-TrBR4-Catalyzed Oxidative Polymerization of Diphenyl Disulfide”, Macromol. Chem. Phys., 216, 1850-1855 (2015). DOI: 10.1002/macp.201500154
Strong-acid-free oxygen-oxidative polymerization of PhSSPh is presented, catalyzed by a vanadyl and TrBR4 system.
172. M. Suzuka, S. Hara, T. Sekiguchi, K. Oyaizu, H. Nishide,* “Polyviologen as the Charge-storage Electrode of an Aqueous Electrolyte- and Organic-based Dye-sensitized Solar Cell”, Polymer, 68, 353-357 (2015). DOI: 10.1016/j.polymer.2015.02.044
171. K. Takahashi, K. Korolev, K. Tsuji, K. Oyaizu, H. Nishide,* E. Bryuzgin, A. Navrotskiy,* I. Novakov, “Facile Grafting-onto-preparation of Block Copolymers of TEMPO and Glycidyl Methacrylates on an Oxide Substrate as an Electrode-active Layer”, Polymer, 68, 310-314 (2015). DOI: 10.1016/j.polymer.2015.02.043
170. F. Aida, Y. Takatori, D. Kiyokawa, K. Nagamatsu, H. Nishide,* K. Oyaizu,* “Poly(1,4-phenylene sulfide) (PPS) Synthesis via Oxidative Polymerization of Diphenyl Disulfide: Mechanistic Insight into the Selective Formation of 1,4-Thiophenylene Chain”, Chem. Lett., 44, 767-769 (2015). DOI: 10.1246/cl.150146
Oxidative polymerization of diphenyl disulfide under molten conditions at moderately elevated temperatures gave poly(1,4-phenylene sulfide) (PPS), using a vanadyl complex–strong acid catalyst with oxygen as the ultimate oxidant.
169. K. Sato, T. Sukegawa, K. Oyaizu,* H. Nishide,* “Synthesis of Poly(TEMPO-substituted Glycidyl Ether) by Utilizing t-BuOK/18-crown-6 for an Organic Cathode-active Material”, Macromol. Symp., 351, 90-96 (2015). DOI: 10.1002/masy.201300224
A nitroxide radical-substituted polyether, poly(TEMPO-substituted glycidyl ether) (PTGE), was synthesized using a potassium tert-butoxide/18-crown-6 initiator. The presence of 18-crown-6 effected significant improvement in the reactivity of the chain end, thus allowing the polymerization to proceed at moderate temperatures to suppress the deactivation of the pendant nitroxide group.
168. Y. Nishikami, T. Konishi, R. Omoda, Y. Aihara, K. Oyaizu,* H. Nishide,* “Oxygen-enriched Electrolytes Based on Perfluorochemials for High-capacity Lithium-oxygen Battery”, J. Mater. Chem. A, 3, 10845-10850 (2015). DOI: 10.1039/c5ta02219c
167. T. Kawai, K. Oyaizu,* H. Nishide,* “High-density and Robust Charge Storage with Poly(anthraquinone-substituted norbornene) for Organic Electrode-active Materials in Polymer-air Secondary Batteries”, Macromolecules, 48, 2429-2434 (2015). DOI: 10.1021/ma502396r
166. H. Maruo, K. Oyaizu, H. Nishide,* “Electrochemical Formation of a Polyviologen-ZnO Composite with an Efficient Charging Capability”, Chem. Lett., 44, 393-395 (2015). DOI: 10.1246/cl.141125
Concurrent and cathodic electrolysis of tris(cyanopyridinio)mesitylene and zinc chloride gave redox-active polyviologen, densely formed around the zinc oxide nanorod, on a substrate, which displayed a large charging–discharging capacity and an excellent rate performance based on a large diffusivity of charge, and was useful as an anode-active material.
165. K. Oyaizu,* H. Tatsuhira, H. Nishide,* “Facile Charge Transport and Storage by a TEMPO-populated Redox Mediating Polymer Integrated with Polyaniline as Electrical Conducting Path”, Polym. J., 47, 212-219 (2015). DOI: 10.1038/pj.2014.124
164. T. Sukegawa, K. Sato, K. Oyaizu,* H. Nishide,* “Efficient Charge Transport of a Radical Polyether/SWCNT Composite Electrode for an Organic Radical Battery with High Charge-storage Density”, RSC Adv., 5, 15448-15452 (2015). DOI: 10.1039/c4ra15949g
A fast and reversible charge storage capability was established for the radical polyether/SWCNT composite layer with a large layer thickness of several tens of micrometres despite the low SWCNT content of 10%.
163. M. Suzuka, S. Hara, T. Sekiguchi, K. Oyaizu, H. Nishide,* “Kinetic Control of Electron Transfer at Doped Zinc Oxide/redox-active Molecule Interface for Photocurrent Rectification”,Chem. Lett., 44, 41-43 (2015). DOI: 10.1246/cl.140872
2014
162. T. Sukegawa, I. Masuko, K. Oyaizu,* H. Nishide,* “Expanding the Dimensionality of Polymers Populated with Organic Robust Radicals Toward Flow Cell Application: Synthesis of TEMPO-crowded Bottlebrush Polymers Using Anionic Polymerization and ROMP”, Macromolecules(ACS Editors’ Choice), 47, 8611-8617 (2014). DOI: 10.1021/ma501632t
161. Y. Sasada, F. Kato, K. Oyaizu, H. Nishide,* “In-situ Polymerization of Thiophene Derivatives Using a Gas-phase Oxidant to Form a Hole-transporting Layer in Dye-sensitized Solar Cell”, J. Photopolym. Sci. Technol., 27, 347-350 (2014). DOI: 10.2494/photopolymer.27.347
Poly(3,4-ethylenedioxythiophene) (PEDOT), for use as a hole-transporting layer in dye-sensitized solar cells (DSSCs), was synthesized via in-situ polymerization using a gas-phase oxidant. Highly volatile iodine was used as the gas-phase oxidant to fill up a porous TiO2 substrate. The conductivity of PEDOT increased to 0.9 S/cm upon the addition of a base, 4-tert-butylpyridine, to the monomer solution. A solid-state DSSC was fabricated using PEDOT as the hole-transporting layer, which displayed photo-electric conversion.
160. K. Oyaizu,* H. Ikeda, N. Hayo, F. Kato, H. Nishide, “Ionic Liquid-inspired Redox Shuttles: Properties of a Ferrocenylimidazolium Salt as an Efficient Mediator for Dye-sensitized Solar Cell”, Chem. Lett., 43, 1134-1136 (2014). DOI: 10.1246/cl.140276
A ferrocenylimidazolium salt was found to be an efficient iodine/iodide-free redox mediator for a dye-sensitized solar cell (DSSC), giving rise to a photoconversion efficiency of 4% under optimized electrolyte conditions.
159. H. Tokue, K. Oyaizu,* T. Sukegawa, H. Nishide,* “TEMPO/viologen Electrochemical Heterojunction for Diffusion Controlled Redox Mediation: A Highly Rectifying Bilayer-sandwiched Device Based on Cross Reaction at Interface between Dissimilar Redox Polymers”, ACS Appl. Mater. Interfaces, 6, 4043-4049 (2014). DOI: 10.1021/am405527y
158. R. Kato, F. Kato, K. Oyaizu, H. Nishide,* “Redox-active Hydroxy-TEMPO Radical Immobilized in Nafion Layer for an Aqueous Electrolyte-based and Dye-sensitized Solar Cell”, Chem. Lett., 43, 480-482 (2014). DOI: 10.1246/cl.131120
157. T. Sukegawa, H. Omata, I. Masuko, K. Oyaizu, H. Nishide,* “Anionic Polymerization of 4-Methacryloyloxy-TEMPO Using an MMA-capped Initiator”, ACS Macro Lett., 3, 240-243 (2014). DOI: 10.1021/mz400644y
2013
156. K. Oyaizu,* N. Hayo, Y. Sasada, F. Kato, H. Nishide,* “Enhanced Bimolecular Exchange Reaction through Programmed Coordination of a Five-coordinate Oxovanadium Complex for Efficient Redox Mediation in Dye-sensitized Solar Cells”, Dalton Trans., 42, 16090-16095 (2013). DOI: 10.1039/C3DT51698A
155. I. S. Chae, M. Koyano, T. Sukegawa, K. Oyaizu,* H. Nishide,* “Redox Equilibrium of a Zwitterionic Radical Polymer in a Non-aqueous Electrolyte for Novel Li+Host Material in a Li-ion Battery”, J. Mater. Chem. A,1, 9608-9611 (2013). DOI: 10.1039/C3TA12076G
154. T. Sukegawa, A. Kai, K. Oyaizu, H. Nishide,* “Synthesis of Pendant Nitronyl Nitroxide Radical-containing Poly(norbornene)s as Ambipolar Electrode-active Materials”, Macromolecules, 46, 1361-1367 (2013). DOI: 10.1021/ma302278h
153. W. Choi, S. Endo, K. Oyaizu, H. Nishide,* K. E. Geckeler,* “Robust and Efficient Charge Storage by Uniform Grafting of TEMPO Radical Polymer around Multi-walled Carbon Nanotubes”, J. Mater. Chem. A, 1, 2999-3003 (2013). DOI: 10.1039/c3ta01588b
152. N. Sano, W. Tomita, S. Hara, C. -H. Min, J. -S. Lee, K. Oyaizu, H. Nishide,* “Polyviologen Hydrogel with High-rate Capability for Anodes toward an Aqueous Electrolyte-type and Organic-based Rechargeable Device”, ACS Appl. Mater. Interfaces, 5, 1355-1361 (2013). DOI: 10.1021/am302647w
151. I. -S. Chae, M. Koyano, K. Oyaizu, H. Nishide,* “Self-doping Inspired Zwitterionic Pendant Design of Radical Polymers toward a Rocking-chair-type Organic Cathode-active Material”, J. Mater. Chem. A, 1, 1326-1333 (2013). DOI: 10.1039/c2ta00785a
150. K. Oyaizu, Y. Niibori, A. Takahashi, H. Nishide, “BODIPY-sensitized Photocharging of Anthraquinone-populated Polymer Layers for Organic Photorechargeable Air Battery”, J. Inorg. Organomet. Polym., 23, 243-250 (2013). DOI: 10.1007/s10904-012-9751-3
2012
149. F. Kato, A. Kikuchi, T. Okuyama, K. Oyaizu, H. Nishide, “Nitroxide Radical Molecules as Highly Reactive Redox Mediators in Dye-sensitized Solar Cells”, Angew. Chem. Int. Ed., 124, 10324-10327 (2012). DOI: 10.1002/ange.201205036
148. N.Sano, M. Suzuki, W. Tomita, K. Oyaizu, H. Nishide, “Indoline Dye-coupled Polyviologen: Its Electrochemical Property and Electropolymerization”, Jpn. J. Appl. Phys., 51, 10NE17 (2012). DOI: 10.1143/JJAP.51.10NE17
An indoline dye-coupled polyviologen was designed as a possible photoanode material for organic photovoltaic cells. A new donor–acceptor (D–A) coupled molecule (CVD131) was immobilized on a current collector by the reductive electropolymerization of its two cyanopyridinium moieties. The formed polyviologen could efficiently accept an excited electron from the indoline dye moiety.
147. K. Nakahara, K. Oyaizu, H. Nishide, “Electrolyte Anion-assisted Charge Transportation in Poly(oxoammonium cation/nitroxyl radical) Redox Gels”, J. Mater. Chem., 22, 13669-13673 (2012). DOI: 10.1039/c2jm31907a
146. K. Oyaizu, H. Nishide, “Macromolecular Complexes Leading to High Performance Energy Devices”, Macromol. Symp., 317-318, 248-258 (2012). DOI: 10.1002/masy.201200012
Dynamic interactions and electronic processes in macromolecule-metal complexes established in 1970s provided conceptual basis for the development of a new class of functional polymers. Principles of soft/multiple interaction and multielectron processes have been pursued by exploring the macromolecule-metal complexes and polyion complexes, which gave rise to more generalized concept of macromolecular complexes.
145. N. Chikushi, H. Yamada, K. Oyaizu, H. Nishide, “TEMPO-substituted Polyacrylamide for an Aqueous Electrolyte-typed and Organic-based Rechargeable Device”, Sci. Chin. Chem., 55, 822-829 (2012). DOI: 10.1007/s11426-012-4556-3
A hydrophilic radical polymer, poly(2,2,6,6-teteramethylpiperidinyloxyl-4-yl acrylamide) (PTAm), was synthesized via oxidation of the corresponding precursor polymer, poly(2,2,6,6-teteramethylpiperidine-4-yl acrylamide). 
2011
144. W. Choi, D. Harada, K. Oyaizu, H. Nishide, “Aqueous Electrochemistry of Poly(vinylanthraquinone) for Anode-active Materials in High-density and Rechargeable Polymer/Air Batteries”,J. Am. Chem. Soc., 133, 19839-19843 (2011). DOI: 10.1021/ja206961t
143. W. Choi, S. Ohtani, K. Oyaizu, H. Nishide, K. E. Geckeler, “Radical Polymer-wrapped SWNTs at a Molecular Level: High-rate Redox Mediation through a Percolation Network for a Transparent Charge-storage Material”, Adv. Mater., 23, 4440-4443 (2011). DOI: 10.1002/adma.201102372
142. K. Oyaizu, W. Choi, H. Nishide, “Functionalization of Poly(4-chloromethylstyrene) with Anthraquinone Pendants for Organic Anode-active Materials”, Polym. Adv. Technol., 22, 1242-1247 (2011). DOI: 10.1002/pat.1968
Condensation of anthraquinone-2-carboxylic acid with poly(4-chloromethylstyrene) afforded a high-density redox polymer containing the anthraquinone pendants with reversible charge storage capability at negative potentials near −1 V versus Ag/AgCl.
141. S. Yoshihara, H. Katsuta, H. Isozumi, M. Kasai, K. Oyaizu, H. Nishide, “Designing Current Collector/composite Electrode Interfacial Structure of Organic Radical Battery”, J. Power Sources, 196, 7806-7811 (2011). DOI: 10.1016/j.jpowsour.2010.10.092
Charge/discharge processes of organic radical batteries based on the radical polymer's redox reaction was largely influenced by the structure and the composition of the composite electrodes. AC impedance measurement of the composite electrodes revealed a strong correlation between the overall electron transfer resistance of the composite electrode and the material of the current collector, which suggested that the electric conduction to the current collector through the contact resistance was crucial.
140. X. Zhuang, H. Yu, Z. Tang, K. Oyaizu, H. Nishide, X. Chen, “Polymerization of Lactic O-Carboxylic Anhydride Using Organometallic Catalysts”, Chin. J. Polym. Sci., 29, 197-202 (2011). DOI: 10.1007/s10118-010-1013-7
The ring-opening polymerization of 5-methyl-1,3-dioxolane-2,4-dione (lactic O-carboxylic anhydride, LacOCA) using organometallic complexes, including Co(III) complexes with Schiff base ligands, Tin(II) alphatates and Al(III) complexes with Schiff base ligands, was explored.
139. T. Suga, S. Sugita, H. Ohshiro, K. Oyaizu, H. Nishide, “P- and N-Type Bipolar Redox-active Radical Polymer: Toward Totally Organic Polymer-based Rechargeable Devices with Variable Configuration”, Adv. Mater.,23, 751-754 (2011). DOI: 10.1002/adma.201003525
138. K. Oyaizu, T. Sukegawa, H. Nishide, “Dual Dopable Poly(phenylacetylene) with Nitronyl Nitroxide Pendants for Reversible Ambipolar Charging and Discharging”, Chem. Lett.(Editor’s Choice), 40, 184-185 (2011). DOI: 10.1246/cl.2011.184 (Open Access)

You may also like

Back to Top